Sabiia Seb
PortuguêsEspañolEnglish
Embrapa
        Busca avançada

Botão Atualizar


Botão Atualizar

Ordenar por: 

RelevânciaAutorTítuloAnoImprime registros no formato resumido
Registros recuperados: 5
Primeira ... 1 ... Última
Imagem não selecionada

Imprime registro no formato completo
Influence des ondes de Rossby sur le système biogéochimique de l'Océan Atlantique Nord: Utilisation des données satellites couleur de l'eau et d'un modèle couplé physique/biogéochimie ArchiMer
Charria, Guillaume.
The marine phytoplankton in the ocean represents only less than 1% of global biomass. Phytoplankton performs half of all photosynthesis. This autotrophic biomass in ocean is then an essential element in the climate regulation through processes as carbon dioxide absorption during the photosynthesis. Therefore, we need to estimate precisely this biomass as well as the processes which affect it. Using remotely sensed data (altimetry and ocean colour) and a coupled physical/biogeochemical model (MERCATOR-OPA/NPZDDON), Rossby waves and their influence on phytoplankton biomass are specifically studied in the North Atlantic Ocean. Their features and their influences on surface chlorophyll concentrations were analysed. Through the different mechanisms identified,...
Tipo: Text Palavras-chave: Coupled physical/biogeochemical modelling; Multi sensor wavelet analysis; Ocean carbon cycle; North Atlantic Ocean; Primary production; Ocean colour; Altimetry; Rossby (or planetary) waves; Planetary waves; Coupled physical/biogeochemical oceanography; Modélisaiton couplée physique/biogéochimie; Analyse en ondelettes multi capteurs; Cycle océanique du carbone; Océan Atlantique Nord; Production primaire; Couleur de l'eau; Altimétrie; Ondes de Rossby ou planétaires; Océanographie couplée physique/biogéochimie.
Ano: 2005 URL: http://archimer.ifremer.fr/doc/2005/these-2454.pdf
Imagem não selecionada

Imprime registro no formato completo
Recent variability of the global ocean carbon sink ArchiMer
Landschuetzer, P.; Gruber, N.; Bakker, D. C. E.; Schuster, U..
We present a new observation-based estimate of the global oceanic carbon dioxide (CO2) sink and its temporal variation on a monthly basis from 1998 through 2011 and at a spatial resolution of 1 degrees x1 degrees. This sink estimate rests upon a neural network-based mapping of global surface ocean observations of the partial pressure of CO2 (pCO(2)) from the Surface Ocean CO2 Atlas database. The resulting pCO(2) has small biases when evaluated against independent observations in the different ocean basins, but larger randomly distributed differences exist particularly in high latitudes. The seasonal climatology of our neural network-based product agrees overall well with the Takahashi et al. (2009) climatology, although our product produces a stronger...
Tipo: Text Palavras-chave: Sea surface pCO(2); Neural network; Air-sea exchange of CO2; Ocean carbon cycle; Observations.
Ano: 2014 URL: https://archimer.ifremer.fr/doc/00292/40345/38920.pdf
Imagem não selecionada

Imprime registro no formato completo
The ECCO-Darwin Data-Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean pCO(2) and Air-Sea CO2 Flux ArchiMer
Carroll, D.; Menemenlis, D.; Adkins, J. F.; Bowman, K. W.; Brix, H.; Dutkiewicz, S.; Fenty, I.; Gierach, M. M.; Hill, C.; Jahn, O.; Landschutzer, P.; Lauderdale, J. M.; Liu, J.; Manizza, M.; Naviaux, J. D.; Roedenbeck, C.; Schimel, D. S.; Van Der Stocken, T.; Zhang, H..
Quantifying variability in the ocean carbon sink remains problematic due to sparse observations and spatiotemporal variability in surface ocean pCO(2). To address this challenge, we have updated and improved ECCO-Darwin, a global ocean biogeochemistry model that assimilates both physical and biogeochemical observations. The model consists of an adjoint-based ocean circulation estimate from the Estimating the Circulation and Climate of the Ocean (ECCO) consortium and an ecosystem model developed by the Massachusetts Institute of Technology Darwin Project. In addition to the data-constrained ECCO physics, a Green's function approach is used to optimize the biogeochemistry by adjusting initial conditions and six biogeochemical parameters. Over seasonal to...
Tipo: Text Palavras-chave: Ocean modeling; Biogeochemistry; Ocean carbon cycle; Data assimilation; Air‐ Sea CO2 flux; Ecosystem model.
Ano: 2020 URL: https://archimer.ifremer.fr/doc/00676/78824/81108.pdf
Imagem não selecionada

Imprime registro no formato completo
The impact of changing wind speeds on gas transfer and its effect on global air-sea CO2 fluxes ArchiMer
Wanninkhof, R.; Trinanes, J..
An increase in global wind speeds over time is affecting the global uptake of CO2 by the ocean. We determine the impact of changing winds on gas transfer and CO2 uptake by using the recently updated, global high-resolution, cross-calibrated multiplatform wind product (CCMP-V2) and a fixed monthly pCO(2) climatology. In particular, we assess global changes in the context of regional wind speed changes that are attributed to large-scale climate reorganizations. The impact of wind on global CO2 gas fluxes as determined by the bulk formula is dependent on several factors, including the functionality of the gas exchange-wind speed relationship and the regional and seasonal differences in the air-water partial pressure of CO2 gradient (pCO(2)). The latter also...
Tipo: Text Palavras-chave: Ocean carbon cycle; Air-sea CO2 fluxes; Wind speed.
Ano: 2017 URL: https://archimer.ifremer.fr/doc/00661/77324/78784.pdf
Imagem não selecionada

Imprime registro no formato completo
The Spatiotemporal Dynamics of the Sources and Sinks of CO2 in the Global Coastal Ocean ArchiMer
Roobaert, Alizee; Laruelle, Goulven G.; Landschuetzer, Peter; Gruber, Nicolas; Chou, Lei; Regnier, Pierre.
In contrast to the open ocean, the sources and sinks for atmospheric carbon dioxide (CO2) in the coastal seas are poorly constrained and understood. Here we address this knowledge gap by analyzing the spatial and temporal variability of the coastal air-sea flux of CO2 (FCO2) using a recent high-resolution (0.25 degrees) monthly climatology for coastal sea surface partial pressure in CO2 (pCO(2)). Coastal regions are characterized by CO2 sinks at temperate and high latitudes and by CO2 sources at low latitude and in the tropics, with annual mean CO2 flux densities comparable in magnitude and pattern to those of the adjacent open ocean with the exception of river-dominated systems. The seasonal variations in FCO2 are large, often exceeding 2 mol C m(-2)...
Tipo: Text Palavras-chave: Coastal seas; Air-sea CO2 exchange; Seasonality; Ocean carbon cycle; Continental shelves.
Ano: 2019 URL: https://archimer.ifremer.fr/doc/00676/78795/81027.pdf
Registros recuperados: 5
Primeira ... 1 ... Última
 

Empresa Brasileira de Pesquisa Agropecuária - Embrapa
Todos os direitos reservados, conforme Lei n° 9.610
Política de Privacidade
Área restrita

Embrapa
Parque Estação Biológica - PqEB s/n°
Brasília, DF - Brasil - CEP 70770-901
Fone: (61) 3448-4433 - Fax: (61) 3448-4890 / 3448-4891 SAC: https://www.embrapa.br/fale-conosco

Valid HTML 4.01 Transitional